Intracellular magneto-spatial organization of magnetic organelles inside intact bacterial cells.

نویسندگان

  • Mohit Naresh
  • Manish Sharma
  • Aditya Mittal
چکیده

Magnetotactic bacteria naturally produce magnetosomes, i.e., biological membrane bound nanomagnets, at ambient conditions. It is important to understand simultaneously the possible size variations and the magnetic behavior of nano-magnets inside intact bacterial cells for both applicational purposes as well as to enhance the basic understanding of biomineralization leading to intracellular nano-magnet synthesis. In this work, we utilize High-resolution Transmission Electron Microscopy and Near-field Scanning Optical Microscopy based measurements on intact non-fixed single cells to rigorously and quantitatively understand the intra-cellular magneto-spatial distribution of nano-magnets synthesized by Magnetospirillum gryphiswaldense. We demonstrate that it is possible to measure the relative magnetic moments along the intracellular magnetosomal chains for intact and non-fixed bacterial cells. Using our in vivo measurements on several single cells, we report that magnetic behavior of intracellular nano-magnets synthesized by magnetotactic bacteria depend on their relative location in the magnetosomal chains. Our work opens promising avenues in the direction of measuring the magnetic behavior of nano-magnets inside living systems by utilizing an operationally straight-forward approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancement of the Magneto-Optical Kerr Effect in One- Dimensional Magnetophotonic Crystals with Adjustable Spatial Configuration

We studied magnetophotonic crystals (MPCs) with introduced magneticdefect layer sandwiched between magnetic and dielectric Bragg mirrors. Thesemagnetophotonic crystals have excellent capabilities to enhance reflection and Kerrrotation simultaneously. By adjusting spatial configuration such as repetition numbersof Bragg mirrors and thickness of magnetic defect layer, we a...

متن کامل

Effects of Environmental Conditions on High-Yield Magnetosome Production by Magnetospirillum gryphiswaldense MSR-1

Background:  Magnetotactic bacteria are a heterogeneous group of Gram-negative prokaryote cells that produce linear chains of magnetic particles called magnetosomes, intracellular organelles composed of magnetic iron particles. Many important applications have been defined for magnetic nanoparticles in biotechnology, such as cell separation applications and  acting as carriers of enzymes, antib...

متن کامل

Magneto-mechanical Stimulation of Bone Marrow Mesenchymal Stromal Cells for Chondrogenic Differentiation Studies

Mechanical interaction of cells and their surroundings are prominent in mechanically active tissues such as cartilage. Chondrocytes regulate their growth, matrix synthesis, metabolism, and differentiation in response to mechanical loadings. Cells sense and respond to applied physical forces through mechanosensors such as integrin receptors. Herein, we examine the role of mechanical stimulation ...

متن کامل

Tethered Magnets Are the Key to Magnetotaxis: Direct Observations of Magnetospirillum magneticum AMB-1 Show that MamK Distributes Magnetosome Organelles Equally to Daughter Cells

Magnetotactic bacteria are a unique group of bacteria that synthesize a magnetic organelle termed the magnetosome, which they use to assist with their magnetic navigation in a specific type of bacterial motility called magneto-aerotaxis. Cytoskeletal filaments consisting of the actin-like protein MamK are associated with the magnetosome chain. Previously, the function of MamK was thought to be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical nanotechnology

دوره 7 4  شماره 

صفحات  -

تاریخ انتشار 2011